ЭЛЬФ2-МЕЕV Мультиплексор E1/V.35

Руководство пользователя Версия ПО 1.11

ТУ6665-002-23587195-2002

Система сертификации «Связь» № ОС/1-СПД-544

Внимание! Не рекомендуется использование мультиплексора на физических линиях связи, не оборудованных устройствами грозозащиты.

Разработчик и производитель: ООО «Парабел» 630090, Новосибирск-90, а/я 126 http://www.parabel.inc.ru Email: <u>info@parabel.inc.ru</u> Tел: +7-3832-138707 Факс: +7-9139139603

ОГЛАВЛЕНИЕ

РИСУНКИ	5
ТАБЛИЦЫ	5
1. Введение	6
2. Технические характеристики	8
 2.1. Общие параметры 2.2. Параметры интерфейсов E1a, E1b 2.3. Параметры интерфейса V.35 2.4. Параметры консоли RS232 	
3. Подключение устройства	9
3.1. Расположение органов управления, индикации и разъемов3.2. Описание разъемов	9 10
4. Конфигурация мультиплексора	
 4.1. Подключение консоли. 4.2. Главное меню программы конфигурации 4.3. Общие настройки 4.4. Конфигурация порта E1a 4.5. Конфигурация порта E1b 4.6. Конфигурация порта V.35 4.7. Средства тестирования и диагностики 	13 13 14 14 14 15 15 15
5. Мониторинг работы портов мультиплексора	17
 6. Функциональное описание 6.1. Режим конвертора интерфейсов 6.2. Режим вставки-удаления канальных интервалов 6.3. Подсчет и проверка CRC4 6.4. CAS сигнализация 6.5. Режим эмуляции DTE порта V.35 	
7. Обновление прошивки мультиплексора	
8. Комплектация мультиплексора	22
9. Упаковка	
Приложение А. Схемы применения	23

РИСУНКИ

Рис. 1. Структурная схема мультиплексора	6
Рис. 2. Подключение в режиме drop-insert	7
Рис. 3. Передняя панель	9
Рис. 4. Задняя панель	9
Рис. 5. Главное меню	13
Рис. 6. Режим Lloop	15
Рис. 7. Режим Rloop	16
Рис. 8. Синхронизация в режиме E1 slave	18
Рис. 9. Синхронизация в режиме E1 master	18
Рис. 10. Коммутация канальных интервалов в режиме drop-insert	19
Рис. 11. Синхронизация в режиме drop-insert	19
Рис. 12. Подключение мультиплексора в режиме DTE	21
Рис. 13. Объединение локальных сетей через сеть SDH	23
Рис. 14. Использование режима вставки-удаления	24
Рис. 15. Организация «последней мили» с использованием режима DTE	25

ТАБЛИЦЫ

Табл. 1. Сигналы разъема Е1А	10
Табл. 2. Сигналы разъема Е1В	10
Табл. 3. Сигналы разъема V.35 (режим DTE)	11
Табл. 4. Сигналы разъема V.35 (режим DCE)	12
Табл. 5. Сигналы разъемы консоли	12
Табл. 6. Статусная информация портов Е1	17
Табл. 7. Статусная информация порта V.35	17

1. Введение

Мультиплексор ЭЛЬФ2-МЕЕV предназначен для использования на первичных каналах группообразования E1 (ИКМ-30) в качестве мультиплексора передачи данных, конвертора интерфейсов или мультиплексора вставки-удаления канальных интервалов (drop-insert). В отличие от большинства подобных изделий ЭЛЬФ2 имеет следующие преимущества:

- Порт V.35 имеет режим эмуляции DTE, что позволяет подключать к мультиплексору не только оконечные устройства передачи данных, но и модемы, мультиплексоры с цифровым стыком V.35
- Наличие встроенного slip буфера обеспечивает согласование скоростей передачи данных на цифровом стыке V.35
- Наличие второго порта E1, который может использоваться для организации режима drop-insert, а также для цепочных подключений мультиплексоров ЭЛЬФ
- Расширенные возможности управления CAS сигнализацией в TS16 обеспечивают логическую совместимость со всем существующим телефонным TDM оборудованием

Мультиплексор ЭЛЬФ2-МЕЕV имеет следующие порты:

- Цифровой порт V.35, режимы работы DTE, DCE
- Порт E1A framed/unframed/drop-insert
- Порт E1B framed/unframed/drop-insert
- Порт управления (консоль) RS232

Структурная схема мультиплексора приведена на Рис. 1.

Рис. 1. Структурная схема мультиплексора

Мультиплексор поддерживает два различных режима работы: конвертора интерфейсов и dropinsert мультиплексора.

В режиме конвертора интерфейсов задействован порт V.35 и порт E1A. Порт E1B не используется. Входной сигнал порта E1A попадает на дефреймер A, где происходит прием и обработка его структуры в соответствии с рекомендациями ITU G.703 и G.704. Выделенные в результате обработки канальные интервалы с данными, поступают в эластичный буфер приема. Из эластичного буфера данные попадают на цифровой порт V.35.

В обратном направлении данные попадают из порта V.35 в эластичный буфер передачи. Из эластичного буфера данные через TDM коммутатор попадают на фреймер канала A, где из них формируется цикловая стуктура E1.

Порт E1 в режиме конвертора интерфейсов может функционировать как в неструктурированном режиме, так и в структурированном по G.704. В первом случае для передачи данных используется весь поток 2048 кбит/с, включая канальные интервалы 0 и 16. Во втором случае для передачи данных могут выбираться нужные канальные интервалы. Из выбранных канальных интервалов мультиплексором формируется единый канал передачи данных с пропускной способностью Nx64 кбит/с, где N=1..30.

В режиме drop-insert для передачи данных по-прежнему используются порты E1A и V.35, однако для вывода незадействованных в передаче данных канальных интервалов используется порт E1B. В этом случае используется только структурированный режим E1. Использование порта E1B позволяет подключать мультиплексор в разрыв канала E1 между каналообразующим оборудованием и оконечным телефонным оборудованием. Пример схемы подключения приведен на Рис. 2.

Рис. 2. Подключение в режиме drop-insert

В потоке E1A неиспользованные для передачи данных канальные интервалы будут заполняться соответствующими интервалами из потока E1B. По приему, из потока E1A будут выделяться канальные интервалы с данными, которые будут приниматься мультиплексором. Неиспользованные канальные интервалы будут отправляться далее в поток E1B. Необходимо отметить, что потоки E1A и E1B не симметричны – прием/передача данных происходит только через E1A, поток E1B служит только для транзита неиспользуемых канальные интервалов.

Порт V.35, независимо от режима функционирования мультиплексора, может быть включен в режим DCE или DTE. В режиме DCE мультиплексор формирует сигналы синхронизации для оконечного устройства передачи данных. В режиме DTE сигналы синхронизации формируются оконечным устройством и являются для мультиплексора входными.

Обходное реле предназначено для прямого подключения портов E1a и E1b при пропадании питания или сбое в работе мультиплексора. Если реле выключено программно или нет питания мультиплексора, реле находится в состоянии «выключено». В выключенном состоянии приемник E1a подключен к передатчику E1b, приемник E1b – к передатчику E1a. Таким образом, если мультиплексор используется в режиме drop-insert, линия E1 будет продолжать функционирование даже при пропадании питания. В режиме конвертора интерфейсов обходное реле может использоваться для электрической изоляции мультиплексора от линии.

Технические характеристики Общие параметры

Параметр	значение
габариты	140х110х35 мм
вес (без источника питания)	0.35 кг
энергопотребление	5 вт
рабочий диапазон температур	от +5°С до +45°С
температура хранения и транспортировки	от -40°С до +70°С
относительная влажность	до 80%
напряжение питания (на разъеме DC)	15B +- 20%
2.2. Параметры интерфейсов E1a, E1b	
Параметр	значение
тип соединителя	RJ45, 8 контактов
тип линии	симметричная витая пара, 120 ом
номинальное напряжение импульса	3 B +- 10%
скорость передачи данных	2048 кбит/с +- 50 ppm
Кодирование	AMI/HDB3
Затухание сигнала, не более, (Е1а)	-40 дб
Затухание сигнала, не более, (E1b)	-6 дб
соответствие стандартам	MCЭ-T G.703, G.704, G.706, G.732, G.823
форма импульса	по рекомендации G.703
размах фазового дрожания	по рекомендации G.823
структура кадров	по рекомендации G.704
2.3. Параметры интерфейса V.35	
Параметр	значение
тип соединителя	26 контактный разъем высокой
	плотности
режим работы	синхронный
скорость передачи данных, кбит/с	Nx64
электрические параметры сигналов	по рекомендации МСЭ-Т V.28
105-107, 109	
электрические параметры сигналов	по рекомендации МСЭ-Т V.35
103, 104, 113-115	
кодировка	NRZ
2.4. Параметры консоли RS232	
параметр	значение
режим работы	асинхронный, 8N1

скорость передачи данных, кбит/с	38400
контроль потока	отсутствует
электрические параметры сигналов	по рекомендации МСЭ-Т V.28

3. Подключение устройства

3.1. Расположение органов управления, индикации и разъемов

На передней панели ЭЛЬФ2 расположены:

- кнопка сброса (Reset)
- индикатор включения питания (Power)
- индикатор режима 100 Мбит Ethernet (100TX) *
- индикатор целостности линии, второй канал Ethernet (Link2) *
- индикатор целостности линии Ethernet (Link) *
- индикатор Е1, канал а (Е1-а)
- индикатор Е1, канал b (Е1-b)
- индикатор ЕЗ *
- 6 контактный разъем консоли RJ-11

Рис. 3. Передняя панель

На задней панели расположены следующие разъемы:

- 8 контактный разъем для подключения к сети Ethernet "витая пара" типа RJ-45
- 8 контактный разъем для подключения к сети Ethernet "витая пара", канал 2, типа RJ-45 *
- 26-контактный разъем порта V.35 типа DBH-26
- 8 контактный разъем порта E1A типа RJ-45
- 8 контактный разъем порта E1B типа RJ-45
- гнездо для подключения источника питания (DC)

Рис. 4. Задняя панель

* в данной модели мультиплексора не используется, установлены заглушки

3.2. Описание разъемов

Контакт	Цепь
1	RX+
2	RX-
3	
4	TX+
5	TX+
6	
7	Земля
8	Земля

Табл. 1. Сигналы разъема Е1А

Контакт	Цепь
1	RX+
2	RX-
3	
4	TX+
5	TX+
6	
7	Земля
8	Земля

Табл. 2. Сигналы разъема Е1В

контакт	сигнал	направление
1	земля	
2		
3		
4	RTS	выход
5	CTS	ВХОД
6	DTR	выход
7	Земля	
8	CD	ВХОД
9	Земля	
10	RxCa	ВХОД
11	RxCb	ВХОД
12	TxCa	ВХОД
13	TxCb	ВХОД
14	RxDb	ВХОД
15	RxDa	ВХОД
16	земля	
17		
18		
19	TxDa	выход
20	TxDb	выход
21		
22		
23		
24		
25		
26		

Табл. 3. Сигналы разъема V.35 (режим DTE)

Примечание: в режиме DTE подключение к порту V.35 осуществляется через кабель IC-V35-DTE

контакт	сигнал	направление
1	земля	
2		
3		
4	CTS	выход
5	RTS	ВХОД
6	CD	выход
7	Земля	
8	DTR	ВХОД
9	Земля	
10		
11		
12	TxCa	ВХОД
13	TxCb	ВХОД
14	TxDb	ВХОД
15	TxDa	ВХОД
16	земля	
17		
18		
19	RxDa	выход
20	RxDb	выход
21	RxCa	выход
22	RxCb	выход
23	TxCa	выход
24	TxCb	выход
25		
26		

Табл. 4. Сигналы разъема V.35 (режим DCE)

Примечание: в режиме DTE подключение к порту V.35 осуществляется через кабель IC-V35-DCE

контакт	сигнал	направление
1	RXD	ВХОД
2	TXD	выход
3	GND	
4	GND	
5		
6		

ruotit et ent nuibi pusbenbi Roncoth	Табл. 5	5. Сигналы	разъемы	консоли
--------------------------------------	---------	------------	---------	---------

4. Конфигурация мультиплексора

4.1. Подключение консоли

Подключение консольного порта осуществляется к последовательному порту компьютера с помощью кабеля-переходника RJ-11 $\leftarrow \rightarrow$ DB-9. На компьютере необходимо запустить терминальную программу Teraterm (или подобную) с параметрами 38400, 8b, 1s, np, flow control=off.

4.2. Главное меню программы конфигурации

После включения питания (или сброса) мультиплексор выводит на консоль главное меню и переходит в режим ожидания. Настройка параметров мультиплексора осуществляется путем перехода по системе иерархических меню и выбора нужных параметров для редактирования. После редактирования параметров настройки можно сохранить в энергонезависимой памяти, для чего существует соответствующий пункт меню.

Экран разбит на 2 части.

В верхней части экрана выводится информация:

- версия ПО
- версия прошивки
- наиболее важные настройки и статусы линий

В нижней части экрана выводится текущее меню (см. Рис. 5).

Рис. 5. Главное меню

Для выбора пункта используйте цифры 0-9. Остальные клавиши будут игнорироваться. Для выхода из меню на уровень вверх нажмите 0.

4.3. Общие настройки

Configuration/Common/Relay – включить (On) или выключить (Off) обходное реле. В выключенном состоянии выходной сигнал E1a подключен к входному сигналу E1b, входной сигнал E1a подключен к выходному сигналу E1b. Если обходное реле включено, сигналы портов E1a и E1b подключаются к входным цепям мультиплексора.

Configuration/Common/Drop-insert – включить (On) или выключить (Off) режим вставкиудаления канальных интервалов портов E1a и E1b (режим drop-insert). Если данный режим выключен, мультиплексор работает как конвертор интерфейсов между E1a и V.35. Порт E1b не используется. В режиме вставки-удаления передаваемые мультиплексором данные будут отправляться в потоке E1A. Неиспользованные для передачи данных канальные интервалы будут прозрачно транслироваться на порт E1b. Выбор канальных интервалов, используемых для передачи данных в режиме drop-insert, осуществляется в конфигурации порта E1a.

Configuration/Common/Swap A/B – в состоянии On порты E1a и E1b логически меняются местами, что эквивалентно перестановке кабелей из E1a в E1b и наоборот. При этом передача данных возможна через E1b, порт E1a будет использоваться только в режиме вставки-удаления. В состоянии off – нормальная работа.

4.4. Конфигурация порта Е1а

Configuration/E1/Framing – включение структурированного режима порта E1a.

В состоянии Оп генерируется и принимается цикл, соответствующий стандарту G.704. Данные порта V.35 инкапсулируются в заданные канальные интервалы цикла E1. Скорость передачи данных при этом Nx64 кбит/с (где N – число заданных канальных интервалов для передачи данных). Канальный интервал 0 используется для синхронизации.

В состоянии Off порт находится в неструктурированном режиме. Данные порта V.35 инкапсулируются в поток G.703 с фиксированной скоростью 2048 кбит/с.

Configuration/E1/MultiFraming – включить (On) или выключить (Off) генерацию сверхцикловой структуры CAS в 16-м канальном интервале. Генерация сверхцикла требуется только для совместимости мультиплексора с некоторым оборудованием E1, на прием или передачу данных этот режим не влияет (подробнее о CAS сигнализации см. в функциональном описании).

Configuration/E1/Line code – установка требуемого линейного кода порта E1a (AMI или HDB3).

Configuration/E1/Clock source – выбор источника синхронизации E1. Line – синхронизация по приемному потоку E1, Internal – синхронизация по внутреннему источнику. В общепринятой терминологии Line соответствует режиму E1 slave, Internal соответствует E1 master.

Configuration/E1/Timeslots – выбор канальных интервалов, используемых для передачи данных (канальные интервалы с данными помечаются символом #).

Configuration/E1/ts16 ABCD – шестнадцатеричное число 0..f, которое задает код-заполнитель битов сигнализации ABCD в сверхцикле CAS. Код-заполнитель вставляется в КИ16, если КИ16 не используется для передачи данных (подробнее см. описание CAS сигнализации).

Configuration/E1/CRC4 – включить (on) или выключить (off) генерацию CRC4 в направлении передачи

4.5. Конфигурация порта E1b

Порт E1b используется только в режиме вставки-удаления канальных интервалов, при этом специальных опций конфигурации E1b не предусмотрено. Порт E1b всегда работает в структурированном режиме и имеет синхронизацию от линии. Кодировка (AMI/HDB3) порта E1b используется такая же, как для порта E1b. Используемые для передачи данных канальные интервалы такие же, как для порта E1a и задаются в меню **Configuration/E1/Timeslots.**

4.6. Конфигурация порта V.35

Configuration/V35/DTE – включить (on) или выключить (off) режим DTE порта V.35. В режиме DTE сигналы синхронизации приема (RxC) и передачи данных (TxC) являются входными и формируются внешним оборудованием. Этот режим может использоваться для подключения к порту V.35 модема или другого мультиплексора. Если режим DTE выключен, сигналы синхронизации TxC, RxC являются выходными и формируются мультиплексором.

Configuration/V35/Inverse clock – инверсия сигнала синхронизации RxC в режиме DCE. Используется для стыковки с нестандартной аппаратурой. В нормальном режиме off.

Configuration/V35/Inverse data – инверсия сигналов данных TxD, RxD. Используется для стыковки с нестандартной аппаратурой. В нормальном режиме off.

4.7. Средства тестирования и диагностики

Test/E1/Lloop – включение внутреннего шлейфа на соответствующем порту E1 (Рис. 6).

Рис. 6. Режим Lloop

Test/E1/Rloop – включение удаленного шлейфа на соответствующем порту E1 (Рис. 7).

Рис. 7. Режим Rloop

Test/E1/TAOS – посылка сигнала аварии (все "1") Test/E1/Freq – замерить и отобразить частоту несущей Е1 по отношению к внутренней опорной синхронизации мультиплексора

5. Мониторинг работы портов мультиплексора

Статусы портов E1 распечатываются в строке E1 status в шапке экранного меню. Расшифровка статусных полей приведена в Табл. 6.

Поле	Расшифровка	Значение	Комментарий
LOS	Lost Of Signal	On	Нет сигнала Е1
		Off	Сигнал Е1 присутствует, нет аварии
LOF	Lost Of Frame	On	Не обнаружена структура фрейма G.704
		Off	Есть фреймовая синхронизация в
			соответствии с G.704
LOM	Lost Of Multiframe	On	Не обнаружена структура САЅ
			мультифрейма
		Off	Есть синхронизация по CAS
			мультифрейму
LOC	Lost Of CRC4	On	Не обнаружена правильная
			последовательность CRC4
		Off	Обнаружена правильная
			последовательность CRC4
FrErr	Frame Errors	XX/YYYY	XX – 8 разрядный счетчик потерь
			цикловой сигнализации
			ҮҮҮҮ – 16 разрядный счетчик ошибок
			CRC4

Табл. 6. Статусная информация портов Е1

Примечания:

1. При использовании неструктурированного потока наличие LOF, LOM, LOC не является ошибкой.

2. Обновление статуса происходит только при нажатии на клавиатуру.

3. Сброс счетчиков ошибок происходит при обращении к тестовому меню соответствующего порта (Test/E1_A/Freq)

Статус порта V.35 распечатывается в строке V.35 status в шапке экранного меню. Расшифровка статусных полей приведена в Табл. 7.

Поле	Значение	Комментарий
DTR(CD)	On	Сигнал DTR (CD в режиме DTE) активен
	Off	Сигнал DTR (CD в режиме DTE) не активен
RTS(CTS)	On	Сигнал RTS (CTS в режиме DTE) активен
	Off	Сигнал RTS (CTS в режиме DTE) не активен

Табл. 7. Статусная информация порта V.35

6. Функциональное описание

6.1. Режим конвертора интерфейсов

Если Configuration/Common/Drop-insert: off, мультиплексор находится в режиме конвертора интерфейсов E1 $\leftarrow \rightarrow$ V.35. В этом режиме происходит инкапсуляция данных порта V.35 в поток E1a. Оба порта рассматриваются как синхронные битовые потоки. Порядок следования битов порта V.35 соответствует порядку следования битов E1. Порт E1b не используется.

Порт E1a в режиме конвертора может находиться в неструктурированном режиме (Configuration/E1/Framing: off), при этом скорость передачи данных составляет 2048 кбит/с. В структурированном режиме (Configuration/E1/Framing: on) скорость передачи данных составляет Nx64 кбит/с, где N – число выбранных для передачи данных канальных интервалов.

Мультиплексор в режиме конвертора является оконечным E1 устройством с внутренней синхронизацией (E1 master) или синхронизацией от линии (E1 slave).

Рис. 8. Синхронизация в режиме E1 slave

Рис. 9. Синхронизация в режиме E1 master

6.2. Режим вставки-удаления канальных интервалов

Если **Configuration/Common/Drop-insert: оп**, мультиплексор находится в режиме вставкиудаления канальных интервалов. В этом режиме задействованы оба Е1 порта. Логика коммутации канальных интервалов показана на Рис. 10.

Рис. 10. Коммутация канальных интервалов в режиме drop-insert

Как видно из рисунка, порты E1a и E1b находятся в структурированном режиме. Для передачи данных используются КИ2..КИ4. В направлении «E1a -> E1b» поток E1 пропускается мультиплексором в неизменном виде, но из него выделяются канальные интервалы с данными и отправляются на порт V.35. В направлении «E1b -> E1a» канальные интервалы 2..4, идущие из E1b игнорируются. На их место мультиплексор вставляет данные, считанные из порта V.35. Остальные интервалы пропускаются без изменений.

Синхронизация портов мультиплексора в режиме вставки-удаления показана на Рис. 11.

ЭЛЬФ-2 E1A V.35 E1B E1B

Рис. 11. Синхронизация в режиме drop-insert

6.3. Подсчет и проверка CRC4

По приему, на портах E1a и E1b проверяется тестовая последовательность CRC4 независимо от режима порта. Результат проверки отображается в статусной информации порта (поле LOC). Неправильная CRC4 последовательность на входе порта E1 на логику работы мультиплексора не влияет.

В направлении передачи, генерация CRC4 осуществляется для порта E1a, если порт сконфигурирован соответствующим образом (Configuration/E1/CRC4: on).

Последовательность CRC4 на выходе E1b не рассчитывается, так как выходной поток порта E1b эквивалентен входному потоку порта E1a в режиме вставки-удаления. По этой причине последовательность CRC4 на выходе E1b формируется оборудованием, подключенным к порту E1a.

6.4. CAS сигнализация

Для совместимости с телефонным оборудованием, использующим CAS сигнализацию, мультиплексор способен формировать в КИ16 сверхцикл CAS с фиксированным состоянием битов ABCD. В качестве примеров CAS сигнализации можно привести R1.5 «челнок», R2, BCK2. Для корректной работы телефонных коммутаторов и ATC, подключенных к общему с мультиплексором каналу E1, занятые для передачи данных каналы должны сопровождаться в КИ16 кодом нейтрального состояния данной телефонной сигнализации. Код нейтрального состояния, задающий биты ABCD, зависит от протокола сигнализации и конкретной телефонной аппаратуры. Для включения CAS сверхцикла необходимо установить меню **Configuration/E1/MultiFraming** в состояние **on**. Содержимое битов ABCD задается в меню

Configuration/E1/ts16 ABCD.

В режиме конвертора интерфейсов биты заданный код ABCD будет формироваться в КИ16 для каналов 1-15, 17-31. В режиме вставки-удаления заданный код ABCD порта E1a будет формироваться только для каналов, занятых под передачу данных. Для оставшихся каналов биты ABCD пропускаются без изменения, т.е. формируются оборудованием, подключенным к порту E1b.

Необходимо отметить, что CAS сигнализация формируется мультиплексором в случае, если КИ16 не используется для обмена данными. В противном случае, CAS сверхцикл и биты ABCD в направлении передачи не формируются.

На прием, CAS сверхцикл и биты ABCD мультиплексором не используются. В режиме вставки-удаления CAS сигнализация прозрачно пропускается из порта E1a в порт E1b.

Если мультиплексор установлен в режим вставки-удаления и телефонное оборудование использует общеканальную сигнализацию, CAS сверхцикл необходимо выключить (Configuration/E1/MultiFraming:off).

6.5. Режим эмуляции DTE порта V.35

Режим эмуляции DTE позволяет подключать к порту V.35 мультиплексора DCE устройства – модемы, другие мультиплексоры, TDM коммутаторы. Пример подключения мультиплексора к внешнему модему изображен на Рис. 12. Порт V.35 Эльф-2 установлен в режим эмуляции DTE. Сигналы синхронизации TXC и RXC порта формируются модемом и подаются на Эльф-2. Синхронизация порта E1 мультиплексора осуществляется по принятому потоку E1. Таким образом, в мультиплексор поступают два независимых источника синхронизации – от модема и от потока E1.

Рис. 12. Подключение мультиплексора в режиме DTE

Необходимым условием корректной работы мультиплексора в этом случае является одинаковая скорость передачи данных на обоих портах, поэтому в данном примере порт E1 должен использовать для передачи данных два канальных интервала (128 Кбит/с). Заметим также, что данные от фреймера E1 будут поступать в FIFO не равномерно, а пачками по 16 бит, с периодом кадра E1 (8 КГц) и скоростью передачи 2048 Кбит/с.

Функция FIFO, изображенного на рисунке, заключается в сглаживании неравномерного потока данных от фреймера E1. Длина FIFO составляет 256 бит, что обеспечивает корректную работу механизма при любой комбинации использованных канальных интервалов. Во-вторых, FIFO является частью механизма выравнивания скоростей. При отсутствии такого механизма переполнения FIFO возникали бы периодически, приводя к ошибкам в линии связи.

Механизм выравнивания скоростей заключается во вставке-удалении флагов HDLC. Данный механизм основан на предположении, что данные, передаваемые по каналу, инкапсулированы во фреймы HDLC. Большинство современных протоколов канального уровня удовлетворяют этому условию – в том числе наиболее распространенные PPP, FR, Cisco HDLC. Напомним, что начало и конец фрейма HDLC маркируются флагом 0x7E. Межпакетные промежутки также заполнены флагами. Кроме маркирования начала и конца фрейма, флаги не несут полезной информации, поэтому вставка или удаление флага в межпакетный промежуток происходит прозрачно для канала данных. Современные контроллеры HDLC корректно работают при уменьшении количества флагов между пакетами до 1 (режим разделяемого флага).

Механизм удаления флагов активизируется при переполнении FIFO. Граница переполнения установлена на 75% длины FIFO. Когда механизм удаления активизирован, происходит удаление флагов из промежутков между пакетами, вплоть до одного. В результате FIFO освобождается. Отключение механизма удаления произойдет при заполнении FIFO на 50%.

Механизм вставки флагов активизируется при освобождении FIFO более чем на 25%. Вставка флагов в межпакетные промежутки происходит до тех пор, пока FIFO не заполнится на 50%.

Выравнивание скоростей будет работать корректно, если отклонение задающих частот на портах Е1 и V.35 не превышает величины:

dF = NF/(MTU + 1),

где

MTU – максимальная длина пакетов в канале связи в байтах,

NF – число дополнительных флагов между пакетами, кроме стопового.

MTU и NF задаются при настройке интерфейса внешнего маршрутизатора, формирующего пакеты.

Для примера, если взять распространенные величины MTU=1500 и NF=1, получим допустимое отклонение 666 ppm, что много больше допустимой расстройки кварцевых генераторов в современной телекоммуникационной аппаратуре (100 ppm и менее).

7. Обновление прошивки мультиплексора

Для обновления прошивки:

- 1. Выясните модификацию мультиплексора (по самой верхней строчке).
- 2. Скачайте необходимую прошивку и программу-программатор.
- 3. Подключите консольный кабель и перезагрузите мультиплексор (подождите 5 секунд).
- 4. Загрузите прошивку командой flashrs232 -i /dev/ttyS0 -w -f elf.bin Данная команда загрузит данные через порт com1.
- Проверьте версию прошивки. Так для мультиплексора ЭЛЬФ2-МЕЕV в шапке меню должна быть напечатана строка: Firmware: ELF2-MEEV (2*E1, V.35){0x0}, Revision: XXX
- 6. Если предыдущий шаг прошел успешно мультиплексор уже перезагружен с новой прошивкой, и готов к работе.

8. Комплектация мультиплексора

Мультиплексор поставляется в следующей комплектации:

- Мультиплексор 1 шт
- Консольный кабель (RJ11-DB9) 1 шт
- СD диск с документацией 1 шт

Отдельно могут приобретаться сопутствующие аксессуары:

- Блок питания 220 В
- Блок питания 36..72B
- Кабель-переходник IC-V35-DTE
- Кабель-переходник IC-V35-DCE

9. Упаковка

Мультиплексор поставляется в гофрокартонной коробке с размерами 26x21x6.5 см. Упаковка допускает складирование в сухих закрытых помещениях, не более 10 штук в стопке.

Приложение А. Схемы применения

Рис. 13. Объединение локальных сетей через сеть SDH

Рис. 14. Использование режима вставки-удаления

Рис. 15. Организация «последней мили» с использованием режима DTE