Интерфейсная многоканальная карта Quasar E1

Руководство пользователя Версия 1.4.1 12.02.2014

Новосибирск 2007-2013

Разработчик и производитель: ООО «Парабел» 630090, Новосибирск-90, а/я 126 <u>http://www.parabel.ru</u> Email: <u>info@parabel.ru</u> Тел/факс: +7-383-2138707

Внимание! Запрещено использование устройства на линиях связи, не оборудованных устройствами грозозащиты и выходящих за пределы одного здания

Содержание

1. ВВЕДЕНИЕ	6
2. СТРУКТУРА АДАПТЕРА	7
3. УСТАНОВКА И ПОДКЛЮЧЕНИЕ ПЛАТЫ АДАПТЕРА	8
4. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ	9
4.1. Введение	9
4.2. Требования к системе	10
4.3. Установка драйвера	10
4.4. Конфигурация Е1 портов	11
4.5. Выбор канальных интервалов для передачи данных	12
4.6. Утилита ecfg	13
5. АППАРАТНОЕ ЭХОПОДАВЛЕНИЕ	16
6. ТЕХНИЧЕСКИЕ ПАРАМЕТРЫ АДАПТЕРА	17
7. КОМПЛЕКТ ПОСТАВКИ	17
8. ПОЛЕЗНЫЕ ССЫЛКИ	17

1. Введение

Многоканальная интерфейсная карта Quasar (далее – адаптер) предназначена для подключения каналов E1 к серверам под управлением софт ATC Asterisk. Адаптер выполнен в виде компьютерной платы формата PCI (PCI-Express, PMC) и управляется с помощью специализированного драйвера, разработанного для OC Linux. Адаптер Quasar имеет следующие возможности:

- Количество используемых каналов Е1 4 или 8
- Встроенный полнодоступный аппаратный коммутатор канальных интервалов Е1 с матрицей 256х256 каналов
- DMA режим для передачи данных в память компьютера без участия ЦП
- Автоматический выбор канала синхронизации
- Автоматическая регулировка чувствительности Е1 приемника (до -40 дб)
- Аппаратное эхоподавление
- Управление шина РСІ 2.2, ЗУ или 5У вариант, РСІ-е

Варианты исполнения адаптера, в зависимости от количества каналов и интерфейса:

Наименование	Опции
Quasar-8PMC	8 Е1 портов, РМС
Quasar-4PMC	4 Е1 порта, РМС
Quasar-8PCI	8 Е1 портов, РСІ
Quasar-4PCI	4 Е1 порта, РСІ
Quasar-8PCX	8 Е1 портов, РСІе
Quasar-4PCX	4 Е1 порта, РСІе
Quasar-8PCX-EC	8 Е1 портов, РСІе, эхоподавитель
Quasar-4PCX-EC	4 E1 порта, PCIe, эхоподавитель
Quasar-8PCI-EC	8 Е1 портов, РСІ, эхоподавитель
Quasar-4PCI-EC	4 E1 порта, PCI, эхоподавитель

2. Структура адаптера

Адаптер состоит из следующих функциональных блоков (см. рис):

LIU & Framer – микросхема трансивера G.703 и фреймера G704

TDM switch – коммутатор канальных интервалов E1 (256х256 КИ)

DMA контроллер осуществляет передачу данных между адаптером и PCI шиной

PCI bridge – микросхема моста на PCI/PCIe шине

EC module – модуль аппаратного эхоподавления

3. Установка и подключение платы адаптера

Ниже изображена лицевая панель адаптеров Quasar-8PCI, PMC, PCX и таблица подключения входных портов.

Порт\Вывод	1	2	3	4	5	6	7	8
Port 1,2	TX1+	TX1-	RX1+	TX2+	TX2-	RX1-	RX2+	RX2-
Port 3,4	TX3+	TX3-	RX3+	TX4+	TX4–	RX3-	RX4+	RX4-
Port 5,6	TX5+	TX5-	RX5+	TX6+	TX6-	RX5-	RX6+	RX6-
Port 7,8	TX7+	TX7–	RX7+	TX8+	TX8–	RX7-	RX8+	RX8-

Примечания.

- 1. RX приемник (вход), TX передатчик (выход)
- 2. В 4-х канальных картах отсутствуют порты 5,6,7,8

Тип используемого соединителя RJ-45

	1	8
ſ		2222 2
ľ	~_	∽┛

LED1,2 – светодиоды индикации режима работы

Оба светодиода погашены – не загружена прошивка

Оба светодиода горят – прошивка загружена, но не загружен драйвер

Один светодиод горит – прошивка загружена, драйвер загружен, готовность к работе

4. Программное обеспечение

4.1. Введение

Программное обеспечение, от которого зависит работа адаптера, состоит из следующих компонентов: Программное обеспечение, от которого зависит работа адаптера, состоит из следующих компонентов:

- Пакет DAHDI (ранее Zaptel). Данный компонент реализует низкоуровневые процедуры работы с телефонным оборудованием. Пакет DAHDI не обязательно поставляется вместе с адаптером, он может быть загружен с публично доступных серверов в интернете (см. Полезные ссылки в конце данного руководства). Разработчик адаптера Quasar не накладывает дополнительных модификаций пакета DAHDI, обеспечивается работа в стандартной редакции.
- Драйвер quasar.ko, который логически является частью пакета DAHDI. Данный компонент реализует обработку специфических для адаптера функций. Драйвер поставляется в виде исходных текстов и перед загрузкой в систему он должен быть скомпилирован, для чего на сервере должен быть доступен соответствующий инструментарий.
- 3. Конфигурационный файл /etc/dahdi/system.conf. В файле определены параметры E1 портов и выбранные канальные интервалы для передачи данных. Файл редактируется пользователем с помощью любого текстового редактора, установленного в системе. Рассмотрение синтаксиса конфигурационного файла полностью выходит за рамки данного руководства. Тем не менее, будут рассмотрены команды, касающиеся конфигурации работы адаптера.
- 4. Утилита dahdi_cfg, которая на основе конфигурационного файла прописывает параметры в драйвер. Каждый раз после изменения конфигурационного файла необходимо запускать данную утилиту, чтобы изменения вступили в силу.

4.2. Требования к системе

Перед установкой драйвера необходимо иметь в системе следующее программное обеспечение:

- binutils, make и компилятор gcc
- заголовочные файлы ядра системы, обычно распространяемые в пакете kernelheaders
- пакет DAHDI, в исходных текстах

Перед установкой и использованием драйвера необходимо ознакомиться с документацией на DAHDI и Asterisk.

4.3. Установка драйвера

Драйвер расположен в сжатом tar архиве в файле /Quasar/driver/quasar-x.x.x.tar.bz2, на компакт-диске из комплекта поставки. Начиная с версии 3.0.0 и позже, драйвер предназначен для работы с пакетом DAHDI. Особенности установочного процесса могут меняться от версии к версии драйвера, поэтому необходимо следовать инструкциям, описанным в файле README, расположенном внутри архива.

Конечным результатом компиляции драйвера будет модуль quasar.ko. Перед его загрузкой в систему полезно убедиться, что адаптер успешно опознан PCI подсистемой Linux. Для этого можно использовать утилиту lspci. После ее запуска на экран будет выведен список PCI устройств, среди которых должно присутствовать

Network controller: Altera Corporation Device

Если адаптер опознан, то драйвер должен успешно загрузиться, о чем можно узнать по списку загруженных модулей (утилита lsmod). В списке должен присутствовать модуль quasar. Также, модуль рапортует об успешной загрузке в логе сообщений /var/log/messages.

4.4. Конфигурация Е1 портов

Порты E1 адаптера описываются в конфигурационном файле /etc/dahdi/system.conf. Ключевым словом **span** описываются параметры конкретного порта.

```
span = <span_num>,<timing>,<LBO>,< framing>,<coding>[,crc4]
```

где

span_num – номер порта E1 (от 1 до максимального номера порта в плате)

timing – использовать ли порт как источник синхронизации

0 – порт адаптера ведущий по Е1

1 и более – порт ведомый по E1 и является одним из источников синхронизации адаптера. Чем больше число, тем меньше приоритет порта.

LBO – параметр не используется, ставить 0.

Framing – тип телефонной сигнализации, ставить ссѕ или саз.

Coding – кодирование в линии, может принимать значения ami или hdb3

Crc4 – разрешить проверку и генерацию crc4 (не обязательный параметр)

4.5. Выбор канальных интервалов для передачи данных

Адаптер Quasar может быть использован не только для подключения телефонных каналов, но и для передачи данных через канальные интервалы E1. Обе функции могут исполняться на одной карте одновременно, на разных каналах. Напоминаем, что для этого пакет DAHDI должен быть скомпилирован с поддержкой HDLC подсистемы, что устанавливается параметром CONFIG_DAHDI_NET.

Каждому порту E1 соответствует 31 канальный интервал (КИО отвечает за формат фрейма и в передаче данных не участвует). Нумерация КИ в системе сквозная – для порта 1 соответствуют КИ1..КИ31, для порта 2 – КИЗ2..КИ62 и т.д. Чтобы коммутировать группу КИ из E1 в сетевой интерфейс, используется ключевое слово nethdlc:

nethdlc=<S>-<E>

где

```
S – номер начального КИ,
```

Е – номер конечного КИ

Приведем пример.

nethdlc=2-13

В данной конфигурации 12 КИ первого порта, начиная со 2 и заканчивая 13-м, будут сконфигурированы как один канал передачи данных.

Диапазон КИ может задаваться и через запятую, перечислением. Например, то же самое можно описать как:

nethdlc=2,3-13

Описанная данным образом группа каналов образует в Linux сетевой интерфейс с именем hdlc0. Следующая заявленная команда nethdlc будет соответствовать hdlc1 и т.д. Протокол второго уровня на этом интерфейсе устанавливается с помощью команды sethdlc. Например, команда

sethdlc hdlc0 cisco

устанавливает cisco – совместимый протокол hdlc на канале. Для дальнейшей информации смотрите справку по команде sethdlc.

12

4.6. Утилита ecfg

Утилита ecfg позволяет настраивать параметры E1 интерфейсов и может быть использована как простой анализатор E1. Программа ecfg может быть использована также для настройки некоторых параметров, недоступных для конфигурационных средств DAHDI.

Для интерфейса с драйвером утилита использует специальный файл /dev/quasar. Необходимо отметить, что использование утилиты перекрывает настройки, сделанные из DAHDI. Необходимо помнить, что утилита функционирует независимо и не обновляет данные в структурах DAHDI.

4.6.1. Главное меню

Утилита ecfg запускается со следующими параметрами в командной строке Linux:

ecfg -b M –i N

Где,

М – номер платы [0,1, ...]

N – номер порта E1, начиная с 0 [0..7]

Параметры E1 конфигурируются через систему иерархических меню. После завершения всех операций, пользователь может сохранить параметры в файл. Конфигурация сохраняется в файле /etc/ecfg/quasar_M_N.cfg, где M и N – номера платы и номер порта. После запуска ecfg на экране отображается главное меню, где содержится информация о версии ПО, о номере платы и порта, а также статус выбранного порта E1.

Quasar monitor v.1.14 26/08/2008 Updates: http://parabel.ru/ PMC/chan=0/0, conf. file="/etc/emcfg/quasarm0_0.cfg" HW/FW/REV version=10/10/e, driver verision=2.0.3

Line status: LOS=On , AIS=Off Frame status: LOF=On , Sa4..8=00000, RAIS=Off CAS Multiframe: CAS LOM=Off, XYXX=0000 CRC4 Multiframe: CRC4 err=Off, LOC=On , E bit=On Err counters: HDB3=0, FAS=0, CRC4=0 ABCD status: 00000000 00000000 00000000

- 1. Configuration >>
- 2. Status >>
- 3. Test >>
- 0. Quit

Нажмите клавиши 1-9, чтобы выбрать подменю, или нажмите 0, чтобы выйти из подменю.

Другие клавиши могут использоваться для обновления статусной информации.

4.6.2. Установки порта Е1

Кодирование в линии и синхронизация

Configuration/Line code - выбрать HDB3 или AMI кодировку

Configuration/Clock source – выбрать внутреннюю синхронизациию (Internal) или синхронизацию по линии (line)

Параметры фреймирования

Configuration/Framing/Receive – включить/выключить фреймер на прием. Если «off», то входной поток будет считаться неструктурированным потоком G.703.

Configuration/Framing/Xmit - включить/выключить фреймер на передачу. Если «on», то канальный интервал 0 будет заполняться метками синхронизации по спецификации G.704.

Configuration/Framing/RAI - управление сигналом RAI. Поле может принимать значения on, off, auto. Если установлен «auto», фреймер автоматически будет посылать RAI сигнал противоположной стороне, если на приеме потеряна синхронизация.

Configuration/Framing/(Inter)National bits – установка национальных и интернациональных битов (Sa4-Sa8, Si0, Si1)

Параметры мультифрейма

Configuration/Multiframe/CRC4 multiframe – включить или выключить CRC4

Configuration/Multiframe/CAS – включить или выключить CAS мультифрейм

Configuration/Multiframe/Remote CAS Alarm – управление сигналом аварии CAS (Y бит), может принимать значения on, off, auto

Configuration/Multiframe/X1, X2, X3 – ручное управление X1-X3 битами CAS мультифрейма

Configuration/Multiframe/ts16 ABCD(1-7) Configuration/Multiframe/ts16 ABCD(8-15) Configuration/Multiframe/ts16 ABCD(16-23) Configuration/Multiframe/ts16 ABCD(24-31) – позволяет задать 4 бита сигнализации ABCD для соответствующего канального интервала, поле принимает значения 0..F.

Статусное подменю

Status/Reset – сбросить статистику

Тестовое подменю

Test/Loopback/LLOOP - включить локальный шлейф на порту E1

Test/Loopback/RLOOP – включить удаленный шлейф на порту E1

Test/Emu single LOF – эмулировать одиночную ошибку потери фрейма

Test/Emu single LOC(CRC4) – эмулировать одиночную ошибку CRC4

Test/LOS – эмулировать LOS

Test/AIS - эмулировать ошибку AIS

5. Аппаратное эхоподавление

Модуль эхоподавления доступен в адаптерах с артикулом – ЕС. Модуль предназначен для удаления отраженного сигнала, возникающего в аналоговых окончаниях FXO/FXS при подключении по E1 к внешней ATC (см. рисунок).

Рис. 1. Структура модуля эхоподавления

Эффект эха возникает из-за не идеальности аналоговой телефонной линии FXO/FXS и при наличии существенных задержек прохождения сигнала от абонента к абоненту (более 30 мс). ЕС модуль удаляет отраженный сигнал из сигнала в направлении «E1 -> Asterisk» и пропускает в неизменном виде сигнал в направлении «Asterisk -> E1». Таким образом, удаленный абонент (на рисунке SIP phone) не слышит собственный возвращенный сигнал. Модуль ЕС имеет следующие характеристики:

- Подавление линейной составляющей эха на уровне -30 ... -40 дб
- Глубина эхоподавления 32 мс
- Автоматическое отключение ЕС при обнаружении сигналов факса, модема

Использование моделей Quasar со встроенным эхоподавителем существенно снижает вычислительную нагрузку на сервер с Asterisk. Программное эхоподавление в Asterisk должно быть выключено путем изменения параметров в файле /etc/asterisk/chan_dahdi.conf:

echocancel=no echocancelwhenbridged=no echotraining=no

Аппаратный эхоподавитель разрешен по умолчанию при загрузке модуля quasar.ko без параметра. Он может быть принудительно выключен при указании модулю параметра **noec=1**.

6. Технические параметры адаптера

Параметр	Значение
Тип соединителя	RJ45, 8 контактов
Тип линии	симметричная витая пара, 120 ом
номинальное напряжение импульса	3 B +- 10%
скорость передачи данных	2048 кбит/с +- 50 ppm
Кодирование	AMI/HDB3
Затухание сигнала, не более	-40 дб для порта 1
	-6 дб для порта 28
соответствие стандартам	MCЭ-T G.703, G.704, G.706, G.732, G.823
форма импульса	по рекомендации G.703
размах фазового дрожания	по рекомендации G.823
структура кадров	по рекомендации G.704
управление	PCI 3v или 5v, PCI express
габариты	170 х 120 х 20 мм
условия эксплуатации	Температура воздуха от 5 до 50° С
	Относительная влажность до 80% при 25° С

7. Комплект поставки

- Плата адаптера
- СD с драйвером и руководством пользователя
- Гарантийный талон
- Упаковочная коробка с размерами 26х17х3 см

Вес комплекта не более 0.5 кг.

8. Полезные ссылки

http://www.asterisk.org/downloads

Версии. 1.4 – аппаратеое эхоподавление 1.4.1 – РСІ версия с ЕС