Руководство пользователя по настройке DAHDI/Asterisk

Версия 1.4

30.11.2016

Разработчик и производитель: ООО «Парабел»

630090, Новосибирск, ул. Демакова 23/5.

http://www.parabel.ru

Email: info@parabel.ru

Тел/факс: +7-383-2138707

оглавление

1.	Введе	ние	5
	1.1.	Цель настоящего документа	5
	1.2.	Пакет драйверов DAHDI	5
2.	Устан	овка DADHI и конфигурация DAHDI_TDMOX	6
	2.1.	Установка DAHDI	6
	2.1.1.	Установка драйвера DAHDI	6
	2.1.2.	Установка утилит DAHDI	6
	2.1.3.	Особенности компиляции драйверов	7
	2.2.	Конфигурация DAHDI_TDMOX	8
	2.2.1.	Структура программного обеспечения	8
	2.2.2.	Создание низкоуровневой конфигурации DAHDI_TDMOX	9
	2.2.3.	Запуск DAHDI	.10
	2.2.4.	Необходимые действия пользователя	.10
	2.2.5.	ПРИМЕР - конфигурация для Asteroid-1U	.11
	2.2.6.	ПРИМЕР - конфигурация для ASTEROID2-MT16	.12
	2.2.7.	ПРИМЕР-конфигурация для ELF2-AE	.13
	2.3.	Синхронизация	.14
3.	Устан	овка DAHDI и конфигурация DAHDI_DYNAMIC	.16
	3.1.	Установка DAHDI	.16
	3.1.1.	Установка драйверов	.16
	3.1.2.	Установка утилит DAHDI	.16
	3.1.3.	Загрузка драйверов без копирования в систему	.16
	3.1.4.	Особенности компиляции драйверов	.17
	3.2.	Конфигурация DAHDI_DYNAMIC	.18
	3.2.1.	Структура программного обеспечения	.18
	3.2.2.	Описание оборудования в файле system.conf	.19
	3.2.3.	Запуск DAHDI	.20

3.2.4.	Необходимые действия пользователя	20
3.2.5.	ПРИМЕР - конфигурация для Asteroid-1U	21
3.2.6.	ПРИМЕР-конфигурация для ASTEROID2-MT16	22
3.2.7.	ПРИМЕР-конфигурация для ELF2-AE в режиме CCS	23
3.2.8.	ПРИМЕР-конфигурация для ELF2-AE в режиме CAS	24
3.3. C	инхронизация	25
4. Диагно	остика	27
4.1. 0	общая проверка работоспостобности DAHDI	27
4.2. Д	иагностика DAHDI_TDMoX	28
5. Настро	йка FreePBX	31
5.1. Hacı	тройка GSM каналов в FreePBX	32
6. Прилож	кения	34
6.1. При	ложение 1. Быстрая установка	34
6.2. При	ложение 2. Глоссарий	34

1. ВВЕДЕНИЕ

1.1. ЦЕЛЬ НАСТОЯЩЕГО ДОКУМЕНТА

Данное руководство поможет вам сконфигурировать Asterisk и необходимые компоненты для работы с устройствами компании Парабел, подключаемых через порт Ethernet по протоколу TDMoE. К таким устройствам относятся Asteroid2, Asteroid2-MT16 и ELF2-AE.

Руководство содержит только необходимый минимум для подключения TDMoE устройств к Asterisk в OC Linux, с дальнейшим конфигурированием вручную или посредством web интерфейса (FreePBX, Asterisk NOW, ...).

1.2. ПАКЕТ ДРАЙВЕРОВ DAHDI

Для работы с периферийным оборудованием необходимы драйвера – программный компонент, работающий в режиме ядра. Для периферийного оборудования в Asterisk таковым является драйвер DAHDI (если быть точнее – пакет драйверов). DAHDI предоставляется в виде архива с исходными текстами, поэтому перед использованием его нужно скомпилировать и установить в целевой системе.

Стандартный пакет драйверов DAHDI предоставляет реализацию протокола TDMoE/TDMoX в драйвере **dahdi_dynamic** и разработан компанией Digium. В силу исторических причин, драйвер практически не поддерживается компанией Digium и содержит значительное количество архитектурных ограничений. Так, например, TDMoE устройства нельзя автоматически сконфигурировать утилитой dahdi_genconf.

Для пользователей оборудования компании Парабел был разработан альтернативный драйвер dahdi_tdmox, который содержит много исправлений, имеет встроенные средства диагностики, лучше работает на многопроцессорных системах и системах с большой нагрузкой. Кроме того, драйвер dahdi_tdmox сопровождается скриптами конфигурации, значительно облегчающими его использование в составе пакетов с web интерфейсом – FreePBX, Elastix.

Таким образом, есть две реализации драйверов, поддерживающих оборудование TDMoE – стандартный dahdi_dynamic и альтернативный dahdi_tdmox. Оба драйвера работают в составе пакета DAHDI, но конфигурируются по-разному. Конфигурация обоих драйверов описана в данном руководстве в отдельных главах. Для подключения оборудования необходимо выбрать предпочитаемый способ конфигурации и строго следовать описанию.

2. УСТАНОВКА DADHI И КОНФИГУРАЦИЯ DAHDI_TDMOX

Если планируется использовать стандартный пакет DAHDI (драйвер dahdi_dynamic), эту главу можно пропустить.

2.1. YCTAHOBKA DAHDI

2.1.1. УСТАНОВКА ДРАЙВЕРА DAHDI

- Скачайте "сборка DAHDI с исправлениями и дополнениями" с нашего сайта. Найти последнюю версию можно на странице <u>http://parabel.ru/download/</u>.
- 2. Распакуйте архив tar xf dahdi_2.9.2+2.9.2-parabel_2.9.2.1.tar.bz2
- Убедитесь в наличии пакетов, необходимых для компиляции драйверов.
 Пакеты вида: patch, make, gcc, linux-headers-`uname –r`, linux-kbuild-`uname –r`
- 4. Разрешите/запретите необходимые опции компиляции. *editor build.sh*
- 5. Скомпилируйте драйвер ./build.sh
- Удалите старые драйвера, чтобы избежать возможный конфликт версий. cd dahdi-linux-complete/linux; make uninstall modinfo dahdi должна выдать "ERROR: Module dahdi not found."
- 7. Установите драйвера ./install.sh

2.1.2. УСТАНОВКА УТИЛИТ DAHDI

Установите утилиты DAHDI, на выбор:

- Используя ваш менеджер пакетов (apt, yum,...)
 Возможно, утилиты уже установлены менеджером пакетов, как зависимости для пакета asterisk, asterisk-dahdi, ...
- Из нашей сборки.
 ./build.tools.sh
 ./install.tools.sh

ВНИМАНИЕ: Не рекомендуется устанавливать утилиты из нашей сборки DAHDI поверх утилит, установленных менеджером пакетов. Это может привести к конфликту версий файлов.

Примените исправления dahdi_tdmox\patches\ для скриптов и утилит DAHDI, FreePBX, Elastix.

- Для поддержанных дистрибутивов запустите скрипт ./patch.sh из соответствующей директории. Например: freepbx-2.11
- Для остальных дистрибутивов примените исправления из директории, соответствующей версии утилит DAHDI. Например: dahdi-2.9.0.
 См. dahdi_cfg –h.
 См. man patch .

2.1.3. ОСОБЕННОСТИ КОМПИЛЯЦИИ ДРАЙВЕРОВ

Необходимо помнить несколько важных моментов.

• Заголовочные файлы ядра, если они ставятся отдельно из дистрибутива, должны быть строго от рабочей версии ядра в системе.

- Сборка любого драйвера Linux должна производиться той же версией gcc, что и ядро Linux.
- Драйвер DAHDI зависит от ядра. После замены или сборки ядра требуется пересборка DAHDI.

2.2. КОНФИГУРАЦИЯ DAHDI_TDMOX

2.2.1. СТРУКТУРА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ.

К процессу конфигурации имеют отношение следующие компоненты:

- Файлы низкоуровневой конфигурации /etc/dahdi/tdmox/span-N (где N номер спана). Эти файлы содержат конфигурацию оборудования и создаются один раз при подключении устройств или при изменении их настроек.
- Скрипт dahdi_tdmox считывает низкоуровневую конфигурацию из файлов и записывает ее в модуль dahdi_tdmox.ko. После этого основной модуль dahdi знает о наличии устройств TDMoX. Скрипт dahdi_tdmox запускается автоматически при старте сервиса dahdi в системе.

- Файл system.conf содержит конфигурацию для основного модуля dahdi. По сути, это такое же описание конфигурации оборудования, но уже на второй стадии конфигурации – при старте основного модуля dahdi.
 Файл system.conf может создаваться автоматически некоторыми версиями FreePBX или утилитой dahdi_genconf, входящей в стандартный пакет dahdi. При автоматическом создании system.conf информация в нем генерируется на основании низкоуровневой конфигурации, выполненной на первой стадии.
- Утилита dahdi_cfg записывает информацию из файла system.conf в основной модуль dahdi. Это завершение второй стадии конфигурации, после чего dahdi полностью работоспособен. Утилита dahdi_cfg запускается автоматически при старте сервиса dahdi в системе.

2.2.2. СОЗДАНИЕ НИЗКОУРОВНЕВОЙ КОНФИГУРАЦИИ DAHDI_TDMOX.

Низкоуровневая конфигурация создается пользователем один раз при подключении оборудования или при изменении его настроек. Прежде всего, необходимо создать в директории /etc/dahdi/tdmox/ файл с расширением .conf необходимого формата и соответствующий настройкам оборудования. Примеры .conf файлов можно посмотреть в директории /etc/dahdi/tdmox/samples.

.conf файл содержит следующие параметры:

addr – Ethernet адрес Asteroid, заданный в консоли устройства.

Адрес можно посмотреть и поменять в USB консоли устройства. Необходимо учитывать, что в пределах одной сети Ethernet все устройства должны иметь уникальный адрес. Заводские настройки устройств TDMoE сделаны с одинаковым MAC адресом. Если к серверу подключается несколько TDMoE устройств, необходимо установить каждому уникальный адрес. Поле addr задается в формате eth0/00:55:55:55:55:20/0, где eth0 - имя сетевого интерфейса, 00:55:55:55:55:20 - тас адрес устройства, 0 - субадрес устройства, всегда 0.

device – Тип устройства. "asteroid", "asteroid-mt16", "asteroid-1u", "elf2-ae".

moduleN – тип модуля. FXS, FXO, GSM.

timing – Использовать ли SPAN для синхронизации DAHDI. 0 – не использовать для синхронизации DAHDI.

>0 – можно использовать для синхронизации DAHDI.

ВНИМАНИЕ:

Прочтите главу "Синхронизация".

После создания .conf файла (или после изменения), его необходимо запустить на исполнение, в результате чего запустится утилита (интерпретатор) tdmox_genconf, которая сгенерирует низкоуровневую конфигурацию в директории вида /etc/dahdi/tdmox/span-N. Эта конфигурация является рабочей средой для драйвера dahdi_tdmox и она будет использована далее при старте dahdi.

2.2.3. ЗАПУСК DAHDI

Перед первым запуском DAHDI для совместимости со стандартными утилитами конфигурации, необходимо создать пустой файл /etc/dahdi/system.conf. В дальнейшем этот файл будет автоматически генерироваться web оболочкой или утилитой dahdi_genconf.

Выгрузите Asterisk & DAHDI

service asterisk stop service dahdi unload

Загрузите DAHDI

echo > /etc/dahdi/system.conf service dahdi start

Сгенерируйте конфигурацию DAHDI web оболочкой. Если вы не используете web оболочку – сгенерируйте конфигурацию утилитой dahdi_genconf.

dahdi_genconf system service dahdi restart

Результат запуска можно посмотреть в главе «Диагностика».

2.2.4. НЕОБХОДИМЫЕ ДЕЙСТВИЯ ПОЛЬЗОВАТЕЛЯ

Подведем итог, что же нужно сделать, чтобы сконфигурировать и запустить DAHDI.

- 1. Создать низкоуровневую конфигурацию dahdi_tdmox, соответствующую настройкам оборудования.
- 2. Запустить сервис dahdi.
- 3. Сгенерировать конфигурацию модуля dahdi.

2.2.5. ПРИМЕР - КОНФИГУРАЦИЯ ДЛЯ ASTEROID-1U

Подключите Asteroid-1U к интерфейсу eth0, назначив адрес 00:55:55:55:55:55:01, и назначив его источником синхронизации для DAHDI. Для этого установите и сохраните в консоли Asteroid-1U:

Configuration/MAC = 00:55:55:55:01

Configuration/Clock Source = Asteroid master

Создайте или скопируйте из примеров файл /etc/dahdi/tdmox/asteroid-1u.conf:

#!/usr/bin/env /usr/bin/tdmox_genconf
spanno=1
addr=eth0/00:55:55:55:01/0
device=asteroid-1u
module1=FXS
module2=FXS
module3=FXS
module4=FXS
timing=1

2.2.6. ПРИМЕР - КОНФИГУРАЦИЯ ДЛЯ ASTEROID2-МТ16

Подключите Asteroid2-MT16 к интерфейсу eth0, назначив адрес 00:55:55:55:55:55:14 и назначив его источником синхронизации для DAHDI. Для этого установите и сохраните в консоли Asteroid2-MT16:

Configuration/MAC = 00:55:55:55:14

Configuration/Clock source = Master

Создайте или скопируйте из примеров файл /etc/dahdi/tdmox/asteroid2-mt16.conf

#!/usr/bin/env /usr/bin/tdmox_genconf
spanno=1
addr=eth0/00:55:55:55:55:14/0
device=asteroid2-mt16
module1=FXS
module3=FXS
module4=FXS
module5=FXS
timing=1

2.2.7. ПРИМЕР-КОНФИГУРАЦИЯ ДЛЯ ELF2-AE

Подключите ELF2-AE к интерфейсу eth0, назначив адрес 00:55:55:55:55:00 и назначив его источником синхронизации для DAHDI. Для этого установите и сохраните в консоли ELF2-AE:

Configuration/Common/MAC = 00:55:55:55:00

Configuration/Common/VCO = 0

Configuration/E1/Clock source = Line

Создайте (или скопируйте из примеров) /etc/dahdi/tdmox/elf2-ae.conf

#!/usr/bin/env /usr/bin/tdmox_genconf
spanno=1

addr=eth0/00:55:55:55:55:00/0

device=elf2-ae

timing=1

2.3. СИНХРОНИЗАЦИЯ

Драйвер DAHDI работает в синхронном режиме, т.е. все DAHDI устройства (карты E1, Asteroid, ELF) должны работать синхронно. Под синхронностью мы понимаем иерархическую раздачу часов от одного источника путем конфигурации всех элементов системы в режиме ведущий-ведомый (master-slave). Если имеется поток E1 от провайдера, его, как правило, выбирают в качестве ведущего для всей системы. Если подключения к провайдеру нет – в качестве ведущего необходимо выбрать одно из DAHDI устройств. У ведущего устройства в .conf файле параметр timing = 1.

Ошибки в настройке синхронизации могут привести к нарушению работы PRI протокола, появлению щелчков в голосовом тракте, обрывов факсов.

Из файла *system.conf* DAHDI получает рекомендации, какие SPAN'ы можно использовать в качестве источника синхронизации. DAHDI ищет первый SPAN без статуса ALARM, и использует его в качестве источника синхронизации.

TDMoX устройствам можно выставить приоритеты, какое устройство использовать в качестве источника синхронизации. Чем ниже параметр timing – тем выше приоритет. timing = 0 означает не использовать в качестве источника синхронизации.

Команда "cat /proc/dahdi/[1..100] | grep CLOCKSOURCE" покажет источник синхронизации TDMoX.

Рассмотрим типовые схемы синхронизации.

Состав системы	Настройки устройств	.conf файл	Комментарии
1 устройство Asteroid	Clock source=internal VCO=0	timing = 1	Asteroid будет источником синхронизации для DAHDI
2 устройства Asteroid	Asteroid1: Clock source=internal VCO=0 Asteroid2: Clock source=internal VCO=2	Asteroid1: timing=1 Asteroid2: timing=0	Asteroid1 будет источником синхронизации и для DAHDI, и для Asteroid2.
ELF2-AE и Asteroid.	ELF2-AE: Clock source=line VCO=0 Asteroid: Clock source=internal VCO=2	ELF2-AE: timing=1 Asteroid: timing=0	ELF2-AE получает синхронизацию от E1. DAHDI получает синхронизацию от ELF2-AE. Asteroid получает синхронизацию от DAHDI (т.е. от E1)

2 устройства	ELF2-AE1:	ELF2-AE1:	ELF2-AE1 получает синхронизацию от E1.
ELF2-AE,	Clock source=line	timing=1	DAHDI получает синхронизацию от ELF2-AE1.
ELF2-AE1 — к провайдеру	VCO=0	ELF2-AE2:	ELF2-AE2 получает синхронизацию от DAHDI (т.е. от
(ΓΑΤϹ).	ELF2-AE2:	timing=0	E1).
ELF2-AE2 — к локальной АТС.	Clock source=internal		
	VCO=2		

3. УСТАНОВКА ДАНДІ И КОНФИГУРАЦИЯ ДАНДІ_ДУМАМІС

Если используется альтернативная реализация DAHDI (драйвер dahdi_tdmox), эту главу можно пропустить.

3.1. YCTAHOBKA DAHDI

3.1.1. УСТАНОВКА ДРАЙВЕРОВ

1. Скачайте "сборка DAHDI с исправлениями и дополнениями" с нашего сайта. Найти последнюю версию можно на странице http://parabel.ru/download/.

2. Распакуйте архив tar xf dahdi_2.9.2+2.9.2-parabel_2.9.2.1.tar.bz2

3. Убедитесь в наличии пакетов, необходимых для компиляции драйверов. Пакеты вида: patch, make, gcc, linux-headers-`uname –r`, linux-kbuild-`uname –r`

4. Разрешите/запретите необходимые опции компиляции. editor build.sh

5. Скомпилируйте драйвер ./build.sh

6. Удалите старые драйвера, чтобы избежать возможный конфликт версий. cd dahdi-linux-complete/linux; make uninstall modinfo dahdi должна выдать "ERROR: Module dahdi not found."

7. Установите драйвера ./install.sh

3.1.2. УСТАНОВКА УТИЛИТ DAHDI

Установите утилиты DAHDI, на выбор:

• Используя ваш менеджер пакетов (apt, yum,...) Возможно, утилиты уже установлены менеджером пакетов, как зависимости для пакета asterisk, asterisk-dahdi, ...

Из нашей сборки.
 /build.tools.sh
 /install.tools.sh

ВНИМАНИЕ: Не рекомендуется устанавливать утилиты из нашей сборки DAHDI поверх утилит, установленных менеджером пакетов. Это может привести к конфликту версий файлов.

3.1.3. ЗАГРУЗКА ДРАЙВЕРОВ БЕЗ КОПИРОВАНИЯ В СИСТЕМУ

Для проверки драйверов без копирования в систему, можно воспользоваться скриптами в директории demo/obsolete.

system.conf - файл конфигурации DAHDI.

./run загрузит DAHDI, применит конфигурацию из локального system.conf.

./stop выгрузит DAHDI.

Этих скриптов достаточно для проверки ELF2-AE, Asteroid.

3.1.4. ОСОБЕННОСТИ КОМПИЛЯЦИИ ДРАЙВЕРОВ

Необходимо помнить несколько важных моментов.

- Заголовочные файлы ядра, если они ставятся отдельно из дистрибутива, должны быть строго от рабочей версии ядра в системе.
- Сборка любого драйвера Linux должна производиться той же версией gcc, что и ядро Linux.
- Драйвер DAHDI зависит от ядра. После замены или сборки ядра требуется пересборка DAHDI.

3.2. КОНФИГУРАЦИЯ DAHDI_DYNAMIC

3.2.1. СТРУКТУРА ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

- dahdi_dynamic, dahdi_dynamic_eth модули, реализующие протокол TDMoE, поддержанный в оборудовании ELF, Asteroid.
- Файл system.conf текстовый файл с описанием конфигурации DAHDI
- Утилита dahdi_cfg служит для записи конфигурации в драйвера DAHDI. Утилита dahdi_cfg запускается автоматически при старте сервиса dahdi в системе.

3.2.2. ОПИСАНИЕ ОБОРУДОВАНИЯ В ФАЙЛЕ SYSTEM.CONF.

Содержимое system.conf начинается с описания спана – группы каналов, принадлежащей данному устройству TDMoE (ELF или Asteroid).

Описание спана начинается с ключевого слова dynamic=.

MAC адрес необходимо устанавливать такой же, как в настройках оборудования, выполненных через USB консоль. Необходимо учитывать, что в пределах одной сети Ethernet все устройства должны иметь уникальный адрес. Заводские настройки устройств TDMoE сделаны с одинаковым MAC адресом. Если к серверу подключается несколько TDMoE устройств, необходимо установить каждому уникальный адрес.

N – количество каналов - устанавливается в соответствии с типом подключаемого оборудования.

Изделие	N
Asteroid	30
Asteroid-MT16	128
ELF2 в режиме CCS сигнализации (PRI, SS7)	31
ELF2 в режиме CAS сигнализации (импульсная, MF)	30

t – является ли устройство (спан) источником синхронизации. Если t=0, DAHDI не использует это устройство как источник синхронизации. Если t=1, DAHDI синхронизуется от этого устройства.

Примечание. Перед редактированием файла system.conf необходимо останавливать драйвер dahdi командой "dahdi_cfg -s".

3.2.3. ЗАПУСК DAHDI

Выгрузите Asterisk & DAHDI

service asterisk stop

service dahdi unload

Загрузите DAHDI

service dahdi start

Результат запуска можно посмотреть в главе «Диагностика».

3.2.4. НЕОБХОДИМЫЕ ДЕЙСТВИЯ ПОЛЬЗОВАТЕЛЯ

Подведем итог, что же нужно сделать, чтобы сконфигурировать и запустить DAHDI.

- 1. Отредактировать файл /etc/dahdi/system.conf в соответствии с настройками оборудования.
- 2. Запустить сервис dahdi.

3.2.5. ПРИМЕР - КОНФИГУРАЦИЯ ДЛЯ ASTEROID-1U

Подключите Asteroid-1U к интерфейсу eth0, назначив адрес 00:55:55:55:55:55:01, и назначив его источником синхронизации для DAHDI. Для этого установите и сохраните в консоли Asteroid-1U:

Configuration/MAC = 00:55:55:55:01

Configuration/Clock Source = Asteroid master

Отредактируйте файл /etc/dahdi/system.conf:

dynamic=eth,eth0/00:55:55:55:55:01,32,1 alaw=1-32 echocanceller=oslec,1-32 fxols=1-32 loadzone=ru defaultzone=ru

3.2.6. ПРИМЕР-КОНФИГУРАЦИЯ ДЛЯ ASTEROID2-МТ16

Подключите Asteroid2-MT16 к интерфейсу eth0, назначив адрес 00:55:55:55:55:55:14 и назначив его источником синхронизации для DAHDI. Для этого установите и сохраните в консоли Asteroid2-MT16:

Configuration/MAC = 00:55:55:55:14

Configuration/Clock source = Master

Отредактируйте файл /etc/dahdi/system.conf:

dynamic=eth,eth0/00:55:55:55:55:14,128,1 alaw=1-128 echocanceller=oslec,1-128 fxols=1-112 fxsls=113-128 loadzone=ru defaultzone=ru

3.2.7. ПРИМЕР-КОНФИГУРАЦИЯ ДЛЯ ELF2-AE В РЕЖИМЕ CCS

Режим CCS используется при работе с сигнализациями PRI (EuroISDN, QSIG), SS7. Выбор режима осуществляется заданием числа каналов N=31 в файле system.conf.

Подключите ELF2-AE к интерфейсу eth0, назначив адрес 00:55:55:55:55:00 и назначив его источником синхронизации для DAHDI. Для этого установите и сохраните в консоли ELF2-AE:

Configuration/Common/MAC = 00:55:55:55:50

Configuration/Common/VCO = 0

Configuration/E1/Clock source = Line

Отредактируйте файл /etc/dahdi/system.conf:

dynamic=eth,eth0/00:55:55:55:55:00,31,1 alaw=1-15,17-31 echocanceller=oslec,1-15,17-31 bchan=1-15,17-31 dchan=16 loadzone=ru defaultzone=ru

3.2.8. ПРИМЕР-КОНФИГУРАЦИЯ ДЛЯ ELF2-AE В РЕЖИМЕ CAS

Режим CAS используется при работе с импульсными и MF сигнализациями. Выбор режима осуществляется заданием числа каналов N=30 в файле system.conf.

Подключите ELF2-AE к интерфейсу eth0, назначив адрес 00:55:55:55:500 и назначив его источником синхронизации для DAHDI. Для этого установите и сохраните в консоли ELF2-AE:

Configuration/Common/MAC = 00:55:55:55:50

Configuration/Common/VCO = 0

Configuration/E1/Clock source = Line

Отредактируйте файл /etc/dahdi/system.conf:

dynamic=eth,eth0/00:55:55:55:00,30,1 alaw=1-30 echocanceller=oslec,1-30 fxsls=8-15 fxols=23-30 loadzone=ru defaultzone=ru

3.3. СИНХРОНИЗАЦИЯ

Драйвер DAHDI работает в синхронном режиме, т.е. все DAHDI устройства (карты E1, Asteroid, ELF) должны работать синхронно. Под синхронностью мы понимаем иерархическую раздачу часов от одного источника путем конфигурации всех элементов системы в режиме ведущий-ведомый (master-slave). Если имеется поток E1 от провайдера, его, как правило, выбирают в качестве ведущего для всей системы. Если подключения к провайдеру нет – в качестве ведущего необходимо выбрать одно из DAHDI устройств. У ведущего устройства в system.conf файле параметр t = 1.

Ошибки в настройке синхронизации могут привести к нарушению работы PRI протокола, появлению щелчков в голосовом тракте, обрывов факсов.

Из файла *system.conf* DAHDI получает рекомендации, какие SPAN'ы можно использовать в качестве источника синхронизации. DAHDI ищет первый SPAN без статуса ALARM, и использует его в качестве источника синхронизации.

ТDMoX устройствам можно выставить приоритеты, какое устройство использовать в качестве источника синхронизации. Чем ниже параметр t – тем выше приоритет. t = 0 означает не использовать в качестве источника синхронизации.

Команда "cat /proc/dahdi/[1..100] | grep CLOCKSOURCE" покажет источник синхронизации TDMoX.

Рассмотрим типовые схемы синхронизации.

Состав системы	Настройки устройств	system.conf	Комментарии
1 устройство Asteroid	Clock source=internal VCO=0	t = 1	SPAN1 будет и ClockSource и MASTER.
2 устройства Asteroid	Asteroid1: Clock source=internal VCO=0 Asteroid2: Clock source=internal VCO=2	Asteroid1: t=1 Asteroid2: t=0	Asteroid1 будет источником синхронизации и для DAHDI, и для Asteroid2.
ELF2-AE и Asteroid.	ELF2-AE: Clock source=line VCO=0 Asteroid: Clock source=internal VCO=2	ELF2-AE: t=1 Asteroid: t=0	ELF2-AE получает синхронизацию от E1. DAHDI получает синхронизацию от ELF2-AE. Asteroid получает синхронизацию от DAHDI (т.е. от E1)

2 устройства	ELF2-AE1:	ELF2-AE1:	ELF2-AE1 получает синхронизацию от E1.
ELF2-AE	Clock source=line	t=1	DAHDI получает синхронизацию от ELF2-AE1.
ELF2-AE1 — к провайдеру	VCO=0	ELF2-AE2:	ELF2-AE2 получает синхронизацию от DAHDI (т.е. от
(ГАТС).	ELF2-AE2:	t=0	E1).
ELF2-AE2 — к локальной АТС.	Clock source=internal		
	VCO=2		

4. ДИАГНОСТИКА

4.1. ОБЩАЯ ПРОВЕРКА РАБОТОСПОСТОБНОСТИ DAHDI

Запустите dahdi_tool.

	SPAN	должен	иметь	стату	vc Ok	٢.
--	------	--------	-------	-------	-------	----

8 s	🗗 screen					
DAH	DI Tool (C)2002-2008 Digium, Inc.	<u>^</u>				
	DAHDI Telephony Interfaces					
	Alarms Span					
	OK TDM_A/eth/tdm/00:56:00:00:00:01/0					
Spa	n 1: 30 total channels, 30 configured	F1=Details F10=Quit ⊻				

Если это не так:

- Проверьте кабели и свитчи
- Проверьте, что в устройстве и в конфигурационных файлах был указан один и тот же mac address.
- Проверьте, что устройства подключены к сетевому интерфейсу, указанному в конфигурационных файлах DAHDI.
- Проверьте, что используемый сетевой интерфейс работает. ifconfig должен отобразить интерфейс, на интерфейсе не должно быть ошибок.
- Посмотреть трафик можно командой tcpdump -i eth0 -s 14 "ether proto 0xd00d"
 Пакеты должны чередоваться - пакет к устройству, пакет от устройства.

Посмотреть каналы, занятость, источник синхронизации

watch -n 1 "cat /proc/dahdi/1"

4.2. ДИАГНОСТИКА DAHDI_TDMOX

Если используется драйвер dahdi_tdmox, в файле /proc/dahdi/tdmox_stats можно посмотреть дополнительную статистику работы.

watch -n 1 "cat /proc/dahdi/tdmox_stats"

Счетчики taskleterrors, slip, skip, rxnuerr не должны расти.

🛃 screen	J							
Every 1.	Os: cat /proc/dahdi/tdmo	x_stat	:8		Thu Nov	6 22:40	:15	2014 🔨
dahdi_to	mox statistics							
	taskletreq:	4715,	min:	832,	max:	1149		
	taskletsched:	4715,	min:	832,	max:	1149		
	taskletrun:	4715,	min:	833,	max:	1149		
	taskletexec:	4715,	min:	833,	max:	1148		
	taskletpending:	0						
	taskleterrors:	0						_
	tdmox_sync_tick:	4715						
	dahdi_sync_tick:	4715						
Span 1:	TDM_A/1 "TDM_A/eth/tdm/C	0:56:0	0:00:00:01/0)" Clo	ockSource			
slip:	O, skip:	(), rxnuerr:		O, rxf:	ifo:	1	
rxmin:	833, rxmax:	1149	9, txmin:		833, txmax	::	11	47
								\sim

taskleterrors – процессор не смог выполнить tasklet. Возможно, высокая загрузка системы.

tasklet* min & max – паузы между вызовами tasklet'ов на разных этапах.

slip – tdmox пакеты от устройства идут реже, чем мастер часы DAHDI. См. "

Синхронизация".

skip – tdmox пакеты от устройства идут чаще, чем мастер часы DAHDI. См. "

Синхронизация".

rxnuerr – нарушена нумерация входящих TDMoX пакетов.

rxmin/rxmax – минимальная/максимальная пауза между входящими пакетами TDMoX.

Идеальные значения – 1000.

txmin/txmax – минимальная/максимальная пауза между исходящими пакетами TDMoX.

Идеальные значения – 1000.

Разрешить подсчет/отображение rx/tx/min/max

echo 1 > /sys/module/dahdi_tdmox/parameters/rxtx_time

Разрешить отображение времен исполнения tasklet'ов

echo 1 > /sys/module/dahdi_tdmox/parameters/tasklet_time

Сброс статистики TDMoX

echo > /proc/dahdi/tdmox_stats

5. НАСТРОЙКА FREEPBX

- 1. Выполните "Установка DAHDI" и "Конфигурация DAHDI" для ваших устройств.
- 2. Перезапустите Asterisk & DAHDI amportal stop amportal start
- 3. Продолжите настройку средствами FreePBX Connectivity/DAHDI Config

Внимание: Модули FXS и FXO устройств Asteroid2 и Asteroid2-MT16 используют сигнализацию Loop Start (FreePBX по умолчанию использует Kewl Start). Установите сигнализацию LoopStart, сохраните и примените конфигурацию.

5.1. НАСТРОЙКА GSM КАНАЛОВ В FREEPBX

К сожалению, в FreePBX отсутствует явная поддержка сигнализации E&M, используемой в GSM модулях. Надо описать GSM каналы вручную.

Узнайте номера GSM каналов cat /proc/dahdi/1 | grep TDM_AE

Пропишите каналы в "Connectivity/DAHDI Config /System Settings".

Добавьте строки

echocanceller=oslec,3,7	
alaw=3,7	
e&m=3,7 loadzone=ru	
defaultzone=ru	

System Settings				×
System Settings This edits all settings in	system.conf			
Tone Region:	Russian Federation		¥	
Other Dahdi System Settings:	1 echocanceller	=	oslec,3,7	
	1 alaw	=	3,7	
	1 e&m	=	3,7	
	1 loadzone	=	ru	
	defaultzone	=	ru	
	0			
			Save	el

Пропишите каналы в "Connectivity/DAHDI Config /Global Settings" или в файле /etc/asterisk/chan_dahdi_custom.conf (рекомендуется).

signaling=e&m group=0 context=from-analog channels=3,7

Примените изменения

Restart DAHDI & Asterisk

Каналы GSM не появятся в списке, но будут:

- 1. Видны в asterisk
 - dahdi show channels
- 2. Принимать входящие звонки в Asterisk/FreePBX.
- 3. Доступны для описания исходящих звонков в FreePBX в группе g0.

6. ПРИЛОЖЕНИЯ

6.1. ПРИЛОЖЕНИЕ 1. БЫСТРАЯ УСТАНОВКА.

По адресу http://parabel.ru/d/scripts/dahdi/ доступны скрипты быстрой установки для некоторых дистрибутивов.

На примере FreePBX12:

- Скачайте скрипт быстрой установки. wget -t0 -c http://parabel.ru/d/scripts/dahdi/freepbx12.sh
- 2. Запустите скрипт. bash freepbx12.sh
- 3. Пропишите в устройстве МАС адрес, соответствующий конфигурационному файлу.
- Настройте DAHDI в FreePBX.
 "Connectivity/DAHDI Config"
- Устройство доступно к использованию в FreePBX.
 Настройте ваш номерной план и входящие/исходящие маршруты.

6.2. ПРИЛОЖЕНИЕ 2. ГЛОССАРИЙ

В данном описании использованы следующие термины:

DAHDI – пакет драйверов для низкоуровневой поддержки телефонного оборудования. Пакет работает в составе комплекса Asterisk, под управлением OC Linux.

MAC – уровень доступа к среде Ethernet. В большинстве случаев в тексте имеется ввиду MAC адрес – адрес устройства Ethernet. Также под MAC уровнем может подразумеваться низкоуровневый протокол обмена данными на Ethernet.

Модуль – динамически загружаемый драйвер. Обычно файлы модулей имеют расширение .ko и располагаются в директории /lib/modules/... Модули, имеющие отношение к DAHDI, называются dahdi.ko, dahdi_dynamic.ko, dahdi_dynamic_eth.ko, dahdi_tdmox_eth.ko. Посмотреть список загруженных модулей в linux можно командой lsmod.

Патч – исправление, вносимое в драйвер или программный продукт. Обычно поставляется в виде исходных текстов и применяется с помощью программы patch.

PRI – обозначение семейства сигнализаций, разработанных в рамках проекта ISDN. Сигнализации PRI, как правило, используют 16-й канал кадра E1 и реализуют обмен сигнальными пакетами формата HDLC по последовательному каналу.

Спан (SPAN) – термин, используемый в DAHDI для описания группы однотипно конфигурируемых каналов. В случае E1 адаптеров, например, спан совпадает с портом E1. Нумерация спанов и каналов в Asterisk начинается с номера 1.

TDMoX /TDMoE – протокол передачи телефонной информации в виде пакетов на уровне MAC Ethernet. Протокол реализован в пакете драйверов DAHDI.

CLOCKSOURCE - статус спана, указывающий, что dahdi_dynamic или dahdi_tdmox считают этот спан источником синхронизации модуля.

MASTER - статус спана, указывающий, что DAHDI считает этот спан источником синхонизации.

При правильной конфигурации, один спан должен иметь статус CLOCKSOURCE и MASTER.

Изменения.

- 1.1 описание dahdi_tdmox
- 1.2 добавлено описание стандартного dahdi_dynamic, глоссарий
- 1.3 исправлена ошибка в синтаксисе команды service
- 1.4 обновлено приложение "быстрая установка", заменены примеры Asteroid-1L3S на Asteroid-1U, исправлены mac адреса в примерах.